Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.811
Filtrar
1.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500680

RESUMO

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Assuntos
Neoplasias do Colo , Lipossomos , Nanopartículas , Microambiente Tumoral , Animais , Camundongos , Ligantes , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fator de Necrose Tumoral alfa , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
2.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534365

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.


Assuntos
Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/fisiologia , Transdução de Sinais , Neoplasias/metabolismo
3.
Nanoscale ; 16(13): 6603-6617, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470366

RESUMO

The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvß3 and αvß5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvß5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.


Assuntos
Bacteriófagos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Bacteriófagos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Terapia Genética/métodos
4.
Biochem Pharmacol ; 221: 116041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316367

RESUMO

The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.


Assuntos
Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Necroptose , Neoplasias/patologia , Apoptose , Proteínas Reguladoras de Apoptose
5.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398629

RESUMO

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Estrofantidina , Humanos , Estrofantidina/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
6.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265424

RESUMO

TRAIL (TNF-related apoptosis-inducing ligand) is a potent inducer of tumor cell apoptosis through TRAIL receptors. While it has been previously pursued as a potential anti-tumor therapy, the enthusiasm subsided due to unsuccessful clinical trials and the fact that many tumors are resistant to TRAIL. In this report, we identified heparan sulfate (HS) as an important regulator of TRAIL-induced apoptosis. TRAIL binds HS with high affinity (KD = 73 nM) and HS induces TRAIL to form higher-order oligomers. The HS-binding site of TRAIL is located at the N-terminus of soluble TRAIL, which includes three basic residues. Binding to cell surface HS plays an essential role in promoting the apoptotic activity of TRAIL in both breast cancer and myeloma cells, and this promoting effect can be blocked by heparin, which is commonly administered to cancer patients. We also quantified HS content in several lines of myeloma cells and found that the cell line showing the most resistance to TRAIL has the least expression of HS, which suggests that HS expression in tumor cells could play a role in regulating sensitivity towards TRAIL. We also discovered that death receptor 5 (DR5), TRAIL, and HS can form a ternary complex and that cell surface HS plays an active role in promoting TRAIL-induced cellular internalization of DR5. Combined, our study suggests that TRAIL-HS interactions could play multiple roles in regulating the apoptotic potency of TRAIL and might be an important point of consideration when designing future TRAIL-based anti-tumor therapy.


Assuntos
Apoptose , Neoplasias da Mama , Heparitina Sulfato , Mieloma Múltiplo , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Membrana Celular , Heparitina Sulfato/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral
7.
Cell Death Dis ; 15(1): 40, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216558

RESUMO

The activation of apoptosis signalling by TRAIL (TNF-related apoptosis-inducing ligand) through receptor binding is a fundamental mechanism of cell death induction and is often perturbed in cancer cells to enhance their cell survival and treatment resistance. Ubiquitination plays an important role in the regulation of TRAIL-mediated apoptosis, and here we investigate the role of the E3 ubiquitin ligase Itch in TRAIL-mediated apoptosis in oesophageal cancer cells. Knockdown of Itch expression results in resistance to TRAIL-induced apoptosis, caspase-8 activation, Bid cleavage and also promotes cisplatin resistance. Whilst the assembly of the death-inducing signalling complex (DISC) at the plasma membrane is not perturbed relative to the control, TRAIL-R2 is mis-localised in the Itch-knockdown cells. Further, we observe significant changes to mitochondrial morphology alongside an increased cholesterol content. Mitochondrial cholesterol is recognised as an important anti-apoptotic agent in cancer. Cells treated with a drug that increases mitochondrial cholesterol levels, U18666A, shows a protection from TRAIL-induced apoptosis, reduced caspase-8 activation, Bid cleavage and cisplatin resistance. We demonstrate that Itch knockdown cells are less sensitive to a Bcl-2 inhibitor, show impaired activation of Bax, cytochrome c release and an enhanced stability of the cholesterol transfer protein STARD1. We identify a novel protein complex composed of Itch, the mitochondrial protein VDAC2 and STARD1. We propose a mechanism where Itch regulates the stability of STARD1. An increase in STARD1 expression enhances cholesterol import to mitochondria, which inhibits Bax activation and cytochrome c release. Many cancer types display high mitochondrial cholesterol levels, and oesophageal adenocarcinoma tumours show a correlation between chemotherapy resistance and STARD1 expression which is supported by our findings. This establishes an important role for Itch in regulation of extrinsic and intrinsic apoptosis, mitochondrial cholesterol levels and provides insight to mechanisms that contribute to TRAIL, Bcl-2 inhibitor and cisplatin resistance in cancer cells.


Assuntos
Apoptose , Ubiquitina-Proteína Ligases , Antineoplásicos/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Colesterol/metabolismo , Cisplatino/farmacologia , Cisplatino/metabolismo , Citocromos c/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Morte Celular/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos
8.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279326

RESUMO

Liver tumor organoids derived from liver tumor tissues and pluripotent stem cells are used for liver tumor research but have several challenges in primary cell isolation and stem cell differentiation. Here, we investigated the potential of HepG2-based liver tumor organoids for screening anticancer drugs by evaluating their responsiveness to IFN-ß produced by mesenchymal stem cells (MSCs). Liver tumor organoids were prepared in three days on Matrigel using HepG2, primary liver sinusoidal epithelial cells (LSECs), LX-2 human hepatic stellate cells, and THP-1-derived macrophages at a ratio of 4:4:1:1, with 105 total cells. Hepatocyte-related and M2 macrophage-associated genes increased in liver tumor organoids. IFN-ß treatment decreased the viability of liver tumor organoids and increased M1 macrophage marker expression (i.e., TNF-α and iNOS) and TRAIL. TRAIL expression was increased in all four cell types exposed to IFN-ß, but cell death was only observed in HepG2 cells and macrophages. Further, MSCs overexpressing IFN-ß (ASC-IFN-ß) also expressed TRAIL, contributing to the reduced viability of liver tumor organoids. In summary, IFN-ß or ASC-IFN-ß can induce TRAIL-dependent HepG2 and macrophage cell death in HepG2-based liver tumor organoids, highlighting these liver tumor organoids as suitable for anticancer drug screening and mechanistic studies.


Assuntos
Interferon beta , Neoplasias Hepáticas , Humanos , Apoptose , Morte Celular , Interferon beta/farmacologia , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Organoides/metabolismo , Células-Tronco/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
9.
Invest Ophthalmol Vis Sci ; 65(1): 34, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236186

RESUMO

Purpose: The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms. Methods: To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method. Results: Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye. Conclusions: The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.


Assuntos
Síndromes do Olho Seco , Canais de Potássio de Domínios Poros em Tandem , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Humanos , Camundongos , Autofagia , Síndromes do Olho Seco/metabolismo , Células Epiteliais , Camundongos Endogâmicos C57BL , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Piroptose , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
10.
Drug Resist Updat ; 72: 101033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157648

RESUMO

Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Peróxido de Hidrogênio , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068921

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.


Assuntos
Antineoplásicos , Flavonoides , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
12.
Cell Death Dis ; 14(11): 715, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919293

RESUMO

Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.


Assuntos
Apoptose , Neoplasias , Humanos , Transdução de Sinais , Proteínas Reguladoras de Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Morte Celular , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
13.
Cancer Biol Ther ; 24(1): 2283926, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010777

RESUMO

The development of new cancer therapies requires multiple rounds of validation from in vitro and in vivo experiments before they can be considered for clinical trials. Mathematical models assist in this preclinical phase by combining experimental data with human parameters to provide guidance about potential therapeutic regimens to bring forward into trials. However, granulosa cell tumors of the ovary lack a relevant mouse model, complexifying preclinical drug development for this rare tumor. To bridge this gap, we established a mathematical model as a framework to explore the potential of using a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-producing oncolytic vaccinia virus in combination with the chemotherapeutic agent first procaspase activating compound (PAC-1). We have previously shown that TRAIL and PAC-1 act synergistically on granulosa tumor cells. In line with our previous results, our current model predicts that, although it is unable to stop the tumor from growing in its current form, combination oral PAC-1 with oncolytic virus (OV) provides the best result compared to monotherapies. Encouragingly, our results suggest that increases to the OV infection rate can lead to the success of this combination therapy within a year. The model developed here can continue to be improved as more data become available, allowing for regimen-tailoring via virtual clinical trials, ultimately shepherding effective regimens into trials.


Assuntos
Tumor de Células da Granulosa , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Tumor de Células da Granulosa/terapia , Ligantes , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Fator de Necrose Tumoral alfa , Neoplasias Ovarianas/terapia , Modelos Teóricos
14.
Cell Rep ; 42(12): 113476, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37988267

RESUMO

TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.


Assuntos
Proteínas Reguladoras de Apoptose , NF-kappa B , Humanos , NF-kappa B/metabolismo , Caspase 8/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Apoptose , Inflamação , Citocinas/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores , Proteína de Domínio de Morte Associada a Fas/metabolismo
15.
Int J Biol Macromol ; 253(Pt 5): 127162, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37788732

RESUMO

Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.


Assuntos
Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral
16.
Front Immunol ; 14: 1209249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809073

RESUMO

Background: TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can either induce cell death or activate survival pathways after binding to death receptors (DRs) DR4 or DR5. TRAIL is investigated as a therapeutic agent in clinical trials due to its selective toxicity to transformed cells. Macrophages can be polarized into pro-inflammatory/tumor-fighting M1 macrophages or anti-inflammatory/tumor-supportive M2 macrophages and an imbalance between M1 and M2 macrophages can promote diseases. Therefore, identifying modulators that regulate macrophage polarization is important to design effective macrophage-targeted immunotherapies. The impact of TRAIL on macrophage polarization is not known. Methods: Primary human monocyte-derived macrophages were pre-treated with either TRAIL or with DR4 or DR5-specific ligands and then polarized into M1, M2a, or M2c phenotypes in vitro. The expression of M1 and M2 markers in macrophage subtypes was analyzed by RNA sequencing, qPCR, ELISA, and flow cytometry. Furthermore, the cytotoxicity of the macrophages against U937 AML tumor targets was assessed by flow cytometry. TCGA datasets were also analyzed to correlate TRAIL with M1/M2 markers, and the overall survival of cancer patients. Results: TRAIL increased the expression of M1 markers at both mRNA and protein levels while decreasing the expression of M2 markers at the mRNA level in human macrophages. TRAIL also shifted M2 macrophages towards an M1 phenotype. Our data showed that both DR4 and DR5 death receptors play a role in macrophage polarization. Furthermore, TRAIL enhanced the cytotoxicity of macrophages against the AML cancer cells in vitro. Finally, TRAIL expression was positively correlated with increased expression of M1 markers in the tumors from ovarian and sarcoma cancer patients and longer overall survival in cases with high, but not low, tumor macrophage content. Conclusions: TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype via both DR4 and DR5. Our study defines TRAIL as a new regulator of macrophage polarization and suggests that targeting DRs can enhance the anti-tumorigenic response of macrophages in the tumor microenvironment by increasing M1 polarization.


Assuntos
Leucemia Mieloide Aguda , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Macrófagos/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Receptores de Morte Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Microambiente Tumoral
17.
Biomacromolecules ; 24(11): 5046-5057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812059

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 µM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.


Assuntos
Proteínas Reguladoras de Apoptose , Neoplasias do Colo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Micelas , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Apoptose , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Transporte
18.
J Cell Biochem ; 124(9): 1309-1323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555250

RESUMO

Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic ß-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic ß-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic ß-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.


Assuntos
NF-kappa B , Superóxidos , Animais , Camundongos , Ratos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Dexametasona/farmacologia , Mesilato de Imatinib/farmacologia , Ligantes , NF-kappa B/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Superóxidos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 12-18, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571907

RESUMO

Colorectal cancer (CRC) displays noticeable resistance to chemotherapeutic drugs or innovative tumor cell apoptosis-inducing agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Thus, sensitizers are needed to enhance the effects of TRAIL-based cancer therapies. Elevated tumor cell death has been reported when various HDAC inhibitors are administered with TRAIL in various human cancers; however, SB939-TRAIL combined treatment has not been reported. In this study, we determined the ability of SB939 and TRAIL, as single agents or in combination, to inhibit the growth and survival of colorectal cancer cells. Our results demonstrated the effects of SB939 and TRAIL on cell viability, apoptosis, and morphological changes in HT-29 cells. SB939 treatment induces hyper-acetylation of histones and death receptors (DR) by activating MAPK proteins in a dose- and time-dependent manner. The ability of SB939 to sensitize HT-29 cells suggests that SB939 can induce essential changes in cell signaling pathways. Thus, the pan-HDAC inhibitor SB939 sensitizes TRAIL-induced apoptosis via up-regulation of DR5, and SB939-TRAIL combined treatment may target the MAPK pathways and serve as an effective therapeutic strategy against CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
20.
Med Oncol ; 40(9): 266, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566135

RESUMO

6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Neoplasias Hepáticas/patologia , Regulação para Cima , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Receptores ErbB/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...